Visual Basic® 2005 with .NET 3.0
Programmer’s Reterence

Chapter 24: Printing

ISBN-10: 0-470-13705-3
ISBN-13: 978-0-470-13705-5

1807 |
H|SWWILEY |z
212007 |

NNNNNNNNNNNN

Copyright of Wiley Publishing, Inc.
Posted with Permission

Printing

Visual Basic .NET provides several good tools for printing. String formatting objects enable you to
determine how text is wrapped and truncated if it won't fit in a printing area. Methods provided by
Graphics objects enable you to easily scale, rotate, and translate drawing commands.

The basic process, however, seems somewhat backward to many programmers. Rather than
issuing commands to a printer object, a program responds to requests to draw pages generated
by a PrintDocument object. Instead of telling the printer what to do, the program responds to
the PrintDocument object’s requests for data.

In some cases, generating a printout using only Visual Basic commands can be difficult. The fol-
lowing section explains alternative methods for generating a printout and tells when you might
want to use those methods. If you just want to print several pages of text, it’s often easier to pull
the text into Microsoft Word or some other application that specializes in formatting text rather
than writing your own.

In other cases, however, you cannot take an easy way out. If the program generates very complex
images and graphs, or produces text that is positioned and formatted in a complex manner, you
probably need to work through the Visual Basic printing system. The rest of this chapter explains
the techniques that you use to generate printouts in Visual Basic. It shows how to draw graphics
and text on the printer and how to scale and center the results.

How Not to Print

Although Visual Basic provides many tools for arranging graphics on a printout, it does not always
provide the best approach to printing. The general method for printing in Visual Basic requires you
to generate each page of output in turn. For simple documents (such as a line drawing containing a
few lines and circles on a single page), this is easy.

On the other hand, suppose that you want to print several dozen pages of text interspersed with
tables and pictures. Figuring out where each page break should be placed and how the text should
flow around the tables and pictures could be a huge undertaking. To really do the job right, you
might need to consider orphan lines (when the first line of a paragraph sits at the bottom of a page),
widow lines (the last line of a paragraph sits at the top of a page), orphan and widow words (when

Excerpted from Visual Basic(r) 2005 with .NET 3.0 Programmer's Reference, Wrox Press, www.wrox.com

Part Ill: Graphics

the first or last word sits on a separate line), inserting extra space between words to make a line look nicer,
page numbers, headers and footers, hyphenation, different left and right margins, mirrored margins, page
gutters, bulleted lists, indentation and justification, different font sizes and styles, and a host of other issues.

Word processing and text-formatting applications such as Microsoft Word spend a great deal of effort
on these issues — effort that you probably don’t want to duplicate. In fact, Word is so good at handling
these issues that you should consider using it to print your output instead of writing an elaborate Visual
Basic program to do it.

If your output is simple text, you can drop it into a text file and then use Word to open, format, and print it.
For printouts that you don’t need to generate too frequently, and for printouts where the user may want to
edit the results before printing anyway, this is a simple, flexible solution that doesn’t require you to write,
debug, and maintain a lot of complicated formatting code.

For more elaborate printouts, programs such as Word may still be useful. Using Visual Studio Tools for
Office (VSTO), you can open a Microsoft Word application and control it from your Visual Basic pro-
gram. Your program can use the Word object model to add text, insert pictures, build tables, set page
printing options, and even print the result. You can then save the document for later use or discard it.

Using VSTO, not only can you control Microsoft Word, but you can also use the other Microsoft Office
applications. For example, you can load information into Excel so that you can use its tools to analyze
and graph the data, copy information into Access for analysis by other database applications, or com-
pose email messages in Outlook.

VSTO is relatively complicated and outside of the scope of this book, so it isn’t described here. For more
information, see the VTSO web site at msdn2 .microsoft.com/office/aa905533.aspx. You can
download Visual Studio 2005 Tools for Office Second Edition at www.microsoft.com/downloads/
details.aspx?familyid=5e86cab3-6£d6-4955-b979-el676db6b3ch. You can also learn more in
a book about VSTO such as Professional VSTO 2005: Visual Studio 2005 Tools for Office by Alvin Bruney
(Wiley, 2006).

Basic Printing

The PrintDocument class sits at the heart of the printing process in Visual Basic. The program creates
an instance of this class and installs event handlers to catch its events. When the object must perform
printing-related tasks, it raises events to ask the program for help.

The PrintDocument object raises four key events:

d BeginPrint — The PrintDocument raises its BeginPrint event when it is about to start
printing. The program can initialize data structures, load data, connect to databases, and
perform any other chores it must do to get ready to print.

Q QueryPageSettings — Before it prints a page, the PrintDocument object raises its
QueryPageSettings event. A program can catch this event and modify the document’s
margins for the page that it is about to print.

] pPrintPage — The PrintDocument object raises its PrintPage event to generate a page. The
program must catch this event and use the Graphics object provided by the event handler’s

658

Excerpted from Visual Basic(r) 2005 with .NET 3.0 Programmer's Reference, Wrox Press, www.wrox.com

Chapter 24: Printing

parameters to generate output. When it is finished, the event handler should set the value
e.HasMorePages to True or False to tell the PrintDocument whether there are more pages
to generate.

QO EndpPrint — Finally, when it has finished printing, the PrintDocument object raises its EndPrint
event. The program can catch this event to clean up any resources it used while printing. It can
free data structures, close data files and database connections, and perform any other necessary
cleanup chores.

Having created a PrintDocument object and its event handlers, you can do three things with it. First
you can call the object’s Print method to immediately send a printout to the currently selected printer.
The PrintDocument object raises its events as necessary as it generates the printout.

Second, you can set a PrintPreviewDialog control’s Document property to the PrintDocument object
and then call the dialog’s ShowDialog method. The PrintPreviewDialog displays the print preview
window shown in Figure 24-1, using the PrintDocument object to generate the output it displays.

The preview dialog box’s printer button on the left sends the printout to the printer. Note that this makes
the PrintDocument object regenerate the printout using its events, this time sending the results to the
printer instead of to the print preview dialog box. The magnifying glass button displays a drop-down list
where the user can select various scales for viewing the printout. The next five buttons let the user display
one, two, three, four, or six of the printout’s pages at the same time. The Close button closes the dialog
box and the Page up/down arrows let the user move through the printout’s pages.

2 Print preview = =
& O ~| [@ EE Bl @ | Close page| 1}

\

Figure 24-1: The PrintPreviewDialog control lets the user zoom in and out, and view the printout’s
various pages.

659

Excerpted from Visual Basic(r) 2005 with .NET 3.0 Programmer's Reference, Wrox Press, www.wrox.com

Part Ill: Graphics

The PrintpPreviewControl displays a print preview much as the PrintpPreviewDialog control does,
except that it sits on your form. It does not provide all the buttons that the dialog box does, but it does
provide methods that let you implement similar features. For example, it lets your program set the zoom
level, number of columns in the display, and so forth.

The third task you can do with a PrintDocument is assign it to a PrintDialog object’s Document prop-
erty and then call the dialog box’s ShowDialog method to display the dialog box shown in Figure 24-2.
The user can select the printer and set its properties (for example, selecting landscape or portrait orienta-
tion). When the user clicks Print, the dialog box uses the PrintDocument object to send the printout to
the printer.

Your results could look different from those shown here. The print preview adjusts its appearance based
on such factors as the type of printer you are using, its settings, the size of the paper you are using, and
the paper’s orientation.

The following code shows how a simple printing application can send output to the printer. This is just
about the smallest program that demonstrates all three uses for a PrintDocument object: printing imme-
diately, displaying a print preview dialog box, and displaying a print dialog box.

The code declares a PrintDocument object named m_PrintDocument. It uses the withEvents keyword,
so it can easily catch the object’s events.

When the user clicks the Print Now button, the btnPrintNow_Click event handler assigns
m_PrintDocument to a new PrintDocument object and calls its Print method.

If the user clicks the Print Preview button, the btnPrintPreview_Click event handler assigns
m_PrintDocument to a new PrintDocument object, sets the PrintPreviewDialog object’s
Document property equal to the new object, and invokes the dialog box’s ShowDialog method.

o= Print =)

Select Printer
i Add Printer
=0 Fax
[HP Deskjet F300 Series
Eé; Microsoft XPS Document Writer

Status: Ready [] Print ta file
Location:
Commert
Page Range
@ Al Mumber of copies: 1 5
Selection Currert Page
Pages: Collate 3 3
122 g2

\

Figure 24-2: The PrintDialog control lets the user send
a printout to a printer.

660

Excerpted from Visual Basic(r) 2005 with .NET 3.0 Programmer's Reference, Wrox Press, www.wrox.com

Chapter 24: Printing

The Print Dialog button works similarly. When the user clicks this button, the btnPrintDialog_Click
event handler assigns m_PrintDocument to a new PrintDocument object, sets the PrintDialog object’s
Document property equal to the new object, and calls the dialog box’s Showbialog method.

In all three cases, the PrintDocument object raises its PrintPage event when it is ready to print a page.
The program’s event handler creates a 20-pixel-wide pen and uses it to draw a rectangle around the page’s
margin bounds. It changes the pen so that it is dashed and inset (so it draws inside the borders of a rec-
tangle), and then draws a rectangle around the page’s bounds. It finishes by setting e . HasMorePages to
False to tell the PrintDocument that the printout is complete.

Imports System.Drawing.Printing

Public Class Forml
Private WithEvents m_PrintDocument As PrintDocument

' Print now.

Private Sub btnPrintNow_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles btnPrintNow.Click
m_PrintDocument = New PrintDocument
m_PrintDocument.Print ()

End Sub

' Display a print preview dialog.

Private Sub btnPrintPreview_ Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles btnPrintPreview.Click
m_PrintDocument = New PrintDocument
dlgPrintPreview.Document = m_PrintDocument
dlgPrintPreview.ShowDialog ()

End Sub

' Display a print dialog.
Private Sub btnPrintDialog Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnPrintDialog.Click
m_PrintDocument = New PrintDocument
dlgPrint.Document = m_PrintDocument
dlgPrint.ShowDialog ()
End Sub

' Print a page with a diamond on it.

Private Sub m_PrintDocument_PrintPage (ByVal sender As Object,
ByVal e As System.Drawing.Printing.PrintPageEventArgs)
Handles m_PrintDocument.PrintPage

Using the_pen As New Pen(Color.Black, 20)
e.Graphics.DrawRectangle (the_pen, e.MarginBounds)

the_pen.DashStyle = Drawing2D.DashStyle.Dash

the_pen.Alignment = Drawing2D.PenAlignment.Inset

e.Graphics.DrawRectangle (the_pen, e.PageBounds)
End Using

e.HasMorePages = False

End Sub
End Class

661

Excerpted from Visual Basic(r) 2005 with .NET 3.0 Programmer's Reference, Wrox Press, www.wrox.com

Part Ill: Graphics

The PrintDocument object’s PrintPage event handler provides a parameter of type
PrintPageEventArgs to let the program control the printout and to give information about
the printer. This object’s PageBounds and MarginBounds properties give the location of the
printer’s printable surface and the page’s margins, respectively. Typically, the printable area
might be a quarter inch smaller than the paper’s physical size, and the margins might be an
inch or more inside the paper’s physical size.

Figure 24-3 shows these rectangles in a print preview. The MarginBounds are drawn with a thick
line, and the PageBounds are shown with a thick dashed line.

2 Print preview (= [B]
& O ~| D M @ B @ | Close Page| 115

Figure 24-3: The e.PageBounds and
e.MarginBounds parameters give the
paper’s printable area and margins.

Printing Text

The printing application described in the previous section is extremely simple. It prints a very straight-
forward shape on a single page. You know the positions of the diamond before starting, so the program
needs to perform little arranging and formatting. The only formatting it does is to make its diamond fit
the page’s margins.

This section describes a more useful example that prints a long series of paragraphs using different font
sizes. The program must figure out how to break the text into pages. It also assumes that you will print
the pages double-sided and then later bind the results into a booklet. To allow extra room for the bind-
ing, the program adds a gutter to the margin of edge on each page on the side where the binding will be.
The program assumes that you will place the first page on the outside of the booklet, so it adds the gutter

662

Excerpted from Visual Basic(r) 2005 with .NET 3.0 Programmer's Reference, Wrox Press, www.wrox.com

Chapter 24: Printing

to the left margin on odd-numbered pages and to the right margin on even-numbered pages. Finally, the
program displays a page number in the upper corner opposite the gutter.

Figure 24-4 shows the results displayed in a print preview dialog box, so you can understand the goals.
If you look closely, you can see that the left margins on the first and third pages and the right margin
on the second page are enlarged to allow room for the gutter. You can also see that the page numbers are
in the upper corner on the side that doesn’t have the gutter. Imagine the second page printed on the back
of the first, so their gutters lie on the same edge of the paper.

The following code shows the program that generated this printout. The program begins by declaring
anew PrintDocument object with the withEvents keyword. The program uses ParagraphInfo
structures to hold information about the paragraphs it will print. Each paragraphInfo entry contains

a font size and some text. The m_Paragraphs collection holds the ParagraphInfo objects that describe
the program’s text. The m_ParagraphsToPrint collection holds a copy of the text while the program
is printing. The code uses this copy to keep track of the text that has yet to be printed. Variable
m_PagesPrinted keeps track of the number of pages printed during the printing process. The code
uses this value to display page numbers and to determine whether it is printing an odd or even page.

This little piece of code should have been omitted. When the program loads, the Forml_Load event handler
attaches the program’s print and print preview dialogs to the PrintDocument object. It then creates the
m_Paragraphs collection and adds ParagraphInfo objects to it. This is just a bunch of data, so little of
it is shown here.

When the user clicks the Print Preview or Print Dialog buttons, the corresponding event handlers simply
display the appropriate dialog boxes. When the user clicks the Print Now button, the program calls the
PrintDocument object’s Print method.

.
s Print preview L@éj

~| B Close Page 1%
& O~ c Pag

23

e
ogtions, 3ok aven prist e

gesult You caa thea save the document for lanes moe o
dcacd

x E Graghics bjec o
scale, somse, 2nd weasie draviog commands

o e, e st backracd: oot e gmer, e et
T fusification, &iffeseet font sizes asd ses, asda bostof
peswr—

Word Processors

0 peizting.
3 Basic paguine
0 maem For simgle

Figure 24-4: This preview shows text broken across pages with a gutter and displaying page numbers
along the outside edges.

663

Excerpted from Visual Basic(r) 2005 with .NET 3.0 Programmer's Reference, Wrox Press, www.wrox.com

Part Ill: Graphics

More interesting differences between this program and the one described in the previous section come in
the PrintDocument object’s event handlers. The BeginPrint event handler sets m_PagesPrinted to
zero. It then fills the m_ParagraphsToPrint collection with copies of the ParagraphInfo structures
holding the program’s text data. The program will use the objects in this collection to keep track of the
paragraphs printed.

The QueryPageSettings event handler sets the margins for the page that the PrintDocument object is
about the print. First, it sets the gutter size to 100 printer units (or one inch). Next, the program adjusts
the margins based on the page number. If the page to be printed is the first page in the document, the
program adds the gutter size to the left margin. If the page is some other odd-numbered page, the pro-
gram moves the whole page to the right by increasing the left margin and decreasing the right margin.
Finally, if the next page will be odd numbered, the program shifts the page to the left by decreasing the
left margin and increasing the right margin.

The PrintPage event handler starts by incrementing the number of pages printed. It then includes com-
mented code to draw a rectangle around the page’s margins. When you are debugging a printing routine,
drawing this rectangle can help you see where your drawing is in relation to the page’s margins.

Next, the routine creates a font for the page number. Depending on whether this page is odd or even
numbered, it calculates an X coordinate halfway between the nongutter margin and the edge of the
printable page. It sets a StringFormat object’s Alignment property to make numbers in the left margin
left-justified and to make numbers in the right margin right-justified. It then draws the page number at
the calculated X position, halfway between the top margin and the paper’s top printable boundary.

The program then prepares to draw the text for this page. It sets the StringFormat object’s properties
so that the text is left-justified and lines wrap at word boundaries instead of in the middle of words. It
sets the FormatFlags property to LineLimit. If only part of a line of text would fit vertically on the
page, this makes Visual Basic not draw the line rather than drawing just the top halves of its letters.

After this preparation, the program sets variable ymin to the minimum Y coordinate where the routine
can draw text. Initially, this is the top margin. It then enters a Do loop to process as much text as will fit
on the page.

Inside the loop, the program takes the first ParagraphInfo structure from the m_ParagraphsToPrint
collection and makes a font that has the right size for that paragraph. It creates a RectangleF represent-
ing the remaining area on the page. This includes the area between the left and right margins horizontally,
and between ymin and the bottom margin vertically.

The program then uses the e.Graphics object’s MeasureString method to see how much space the
next piece of text will need. It passes MeasureString the layout rectangle’s size and the StringFormat
object so that Visual Basic can decide how it will need to wrap the paragraph’s text when it prints it. The
code also passes in the variables characters_fitted and lines_filled. These parameters are passed
by reference, so MeasureString can fill in the number of characters and lines it could draw within the
allowed size.

The routine then checks characters_fitted to see if any characters will fit in the available area. If any
characters can fit, the program draws the paragraph. Commented code draws a rectangle around the
text to help with debugging. The program increases ymin by the paragraph’s printed height plus half
of the font’s height to provide a break between paragraphs.

664

Excerpted from Visual Basic(r) 2005 with .NET 3.0 Programmer's Reference, Wrox Press, www.wrox.com

Chapter 24: Printing

Next, the program determines whether the entire paragraph fits in the allowed area. If some of the para-
graph did not fit, the program stores the remaining text in the ParagraphInfo structure and puts the
structure back at the beginning of the m_ParagraphsToPrint collection so that it can be printed on the
next page. It then exits the Do loop because the current page is full.

When the page is full or the m_ParagraphsToPrint collection is empty, the PrintPage event handler is
finished. It sets e . HasMorePages to True if m_ParagraphsToPrint is not empty.

Finally, when the PrintDocument has finished printing the whole document, the EndpPrint event handler
executes. This routine cleans up by setting the m_ParagraphsToPrint variable to Nothing, freeing up the
collection object’s memory. In this program, freeing the collection is a small matter. In a program that allo-
cated more elaborate data structures, cleaning up in this event handler would be more important.

' The PrintDocument.
Private WithEvents m_PrintDocument As New PrintDocument

' Information about the paragraphs to print.
Private Structure ParagraphInfo
Public FontSize As Integer
Public Text As String
Public Sub New(ByVal font_size As Integer, ByVal txt As String)
FontSize = font_size
Text = txt
End Sub
End Structure

' The paragraphs.

Private m_Paragraphs As Collection
Private m_ParagraphsToPrint As Collection
Private m_PagesPrinted As Integer

' Load the paragraph info.

Private Sub Forml_Load(ByVal sender As Object,

ByVal e As System.EventArgs) Handles MyBase.Load
' Attach the PrintDocument to the
' PrintDialog and PrintPreviewDialog.
dlgPrint.Document = m_PrintDocument
dlgPrintPreview.Document = m_PrintDocument

' Make the text to print.
m_Paragraphs = New Collection
m_Paragraphs.Add (New ParagraphInfo (45, "23"))
m_Paragraphs.Add (New ParagraphInfo (27, "Printing"))
Code omitted...
End Sub

' Display the preview dialog.

Private Sub btnPrintPreview Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles btnPrintPreview.Click
dlgPrintPreview.WindowState = FormWindowState.Maximized
dlgPrintPreview.ShowDialog ()

End Sub

665

Excerpted from Visual Basic(r) 2005 with .NET 3.0 Programmer's Reference, Wrox Press, www.wrox.com

Part Ill: Graphics

' Display the print dialog.

Private Sub btnPrintDialog_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles btnPrintDialog.Click
dlgPrint.ShowDialog ()

End Sub

' Print immediately.

Private Sub btnPrintNow_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles btnPrintNow.Click
m_PrintDocument.Print ()

End Sub

' Get ready to print pages.
Private Sub m_PrintDocument_BeginPrint (ByVal sender As Object,
ByVal e As System.Drawing.Printing.PrintEventArgs)
Handles m_PrintDocument.BeginPrint
' We have not yet printed any pages.
m_PagesPrinted = 0

' Make a copy of the text to print.
m_ParagraphsToPrint = New Collection
For Each para_info As ParagraphInfo In m_Paragraphs
m_ParagraphsToPrint.Add (_
New ParagraphInfo (para_info.FontSize, para_info.Text))
Next para_info
End Sub

' Set the margins for the following page.

Private Sub m_PrintDocument_QueryPageSettings (ByVal sender As Object,
ByVal e As System.Drawing.Printing.QueryPageSettingsEventArgs)
Handles m_PrintDocument.QueryPageSettings

' Use a 1 inch gutter (printer units are 100 per inch).
Const gutter As Integer = 100

' See if the next page will be the first, odd, or even.
If m_PagesPrinted = 0 Then
' The next page is the first.
' Increase the left margin.
e.PageSettings.Margins.Left += gutter
ElseIf (m_PagesPrinted Mod 2) = 0 Then
' The next page will be odd.
' Shift the margins right.
e.PageSettings.Margins.Left += gutter
e.PageSettings.Margins.Right -= gutter

' The next page will be even.
' Shift the margins left.

e.PageSettings.Margins.Left -= gutter
e.PageSettings.Margins.Right += gutter
End If
End Sub

' Print the next page.Private Sub m_PrintDocument_PrintPage (ByVal sender As Object,
ByVal e As System.Drawing.Printing.PrintPageEventArgs)

666

Excerpted from Visual Basic(r) 2005 with .NET 3.0 Programmer's Reference, Wrox Press, www.wrox.com

Chapter 24: Printing

Handles m_PrintDocument.PrintPage
' Increment the page number.
m_PagesPrinted += 1

' Draw the margins (for debugging) .
'e.Graphics.DrawRectangle (Pens.Red, e.MarginBounds)

' Print the page number right justified
' in the upper corner opposite the gutter
' and outside of the margin.
Dim x As Integer
Using string_format As New StringFormat
' See if this is an odd or even page.
If (m_PagesPrinted Mod 2) = 0 Then
' This is an even page.
' The gutter is on the right and
' the page number is on the left.
x = (e.MarginBounds.Left + e.PageBounds.Left) \ 2
string_format.Alignment = StringAlignment.Near
Else
' This is an odd page.
' The gutter is on the left and
' the page number is on the right.

x = (e.MarginBounds.Right + e.PageBounds.Right) \ 2
string_format.Alignment = StringAlignment.Far
End If

' Print the page number.
Using the_font As New Font ("Times New Roman", 20, _
FontStyle.Regular, GraphicsUnit.Point)
e.Graphics.DrawString (m_PagesPrinted.ToString,

the_font, Brushes.Black, X,
(e.MarginBounds.Top + e.PageBounds.Top) \ 2, _
string_format)

End Using ' the_font

' Draw the rest of the text left justified,

' wrap at words, and don't draw partial lines.
string_format.Alignment = StringAlignment.Near
string_format.FormatFlags = StringFormatFlags.LineLimit
string_format.Trimming = StringTrimming.Word

' Draw some text.
Dim paragraph_info As ParagraphInfo
Dim ymin As Integer = e.MarginBounds.Top
Dim layout_rect As RectangleF
Dim text_size As SizeF
Dim characters_fitted As Integer
Dim lines_filled As Integer
Do While m_ParagraphsToPrint.Count > 0
' Print the next paragraph.
paragraph_info = DirectCast (m_ParagraphsToPrint (1), ParagraphInfo)
m_ParagraphsToPrint.Remove (1)

Excerpted from Visual Basic(r) 2005 with .NET 3.0 Programmer's Reference, Wrox Press, www.wrox.com

667

Part Ill: Graphics

' Get the area available for this paragraph.

layout_rect = New RectangleF (
e.MarginBounds.Left, ymin,
e.MarginBounds.Width,
e.MarginBounds.Bottom - ymin)

' See how big the text will be and

' how many characters will fit.

' Get the font.

Using the_font As New Font ("Times New Roman",

paragraph_info.FontSize, FontStyle.Regular, GraphicsUnit.Point)
text_size = e.Graphics.MeasureString(_

paragraph_info.Text, the_font,
New SizeF (layout_rect.Width, layout_rect.Height),
string_format, characters_fitted, lines_filled)

' See if any characters will fit.
If characters_fitted > 0 Then
' Draw the text.
e.Graphics.DrawString (paragraph_info.Text,
the_font, Brushes.Black,
layout_rect, string format)

' Debugging: Draw a rectangle around the text.
'e.Graphics.DrawRectangle (Pens.Green,

! layout_rect.Left,

! layout_rect.Top,

J text_size.Width,

! text_size.Height)

' Increase the location where we can start.
' Add a little interparagraph spacing.
ymin += CInt (text_size.Height + _
e.Graphics.MeasureString ("M", the_font).Height / 2)
End If
End Using ' the_font

' See if some of the paragraph didn't fit on the page.
If characters_fitted < Len(paragraph_info.Text) Then
' Some of the paragraph didn't fit.
' Prepare to print the rest on the next page.
paragraph_info.Text = paragraph_info.Text.
Substring (characters_fitted)
m_ParagraphsToPrint.Add (paragraph_info, Before:=1)

' That's all that will fit on this page.
Exit Do
End If
Loop
End Using ' string_format

' If we have more paragraphs, we have more pages.

e.HasMorePages = (m_ParagraphsToPrint.Count > 0)
End Sub

668

Excerpted from Visual Basic(r) 2005 with .NET 3.0 Programmer's Reference, Wrox Press, www.wrox.com

Chapter 24: Printing

' Clean up.
Private Sub m_PrintDocument_EndPrint (ByVal sender As Object,
ByVal e As System.Drawing.Printing.PrintEventArgs)
Handles m_PrintDocument.EndPrint
m_ParagraphsToPrint = Nothing
End Sub

Centering Printouts

The previous section explained how to handle a common scenario: printing large amounts of text. Another
common scenario is printing a picture centered on the printed page. To do that, you must move the draw-
ing vertically and horizontally to put it at the correct position. You can do this by using the Graphics
object’s TranslateTransform method. That method defines a translation transformation for all the
graphics drawn by the object. After you set the transformation, you can draw any graphics as usual, and
the Graphics object automatically moves them to the correct position.

The CenterPictureInMargins subroutine shown in the following code defines a translation transfor-
mation that centers an area within some specified bounds. The routine begins by calling the Graphics
object’s ResetTransform method to remove any transformations that may already be defined. Next,
the routine calculates the horizontal and vertical offsets by which it must translate the rectangle picture_
bounds so that it will be centered within the rectangle margin_bounds. It calls the Graphics object’s
TranslateTransform method to make the translation.

' Transform the Graphics object to center the rectangle

' picture_bounds within margin_bounds.

Private Sub CenterPictureInMargins (ByVal gr As Graphics,

ByVal picture_bounds As RectangleF, ByVal margin_bounds As RectangleF)
' Remove any existing transformation.
gr.ResetTransform()

' Apply the transformation.
Dim dx As Single = _
margin_bounds.Left - picture_bounds.Left + _
(margin_bounds.Width - picture_bounds.Width) / 2
Dim dy As Single = _
margin_bounds.Top - picture_bounds.Top + _
(margin_bounds.Height - picture_bounds.Height) / 2
gr.TranslateTransform(dx, dy)
End Sub

You can use subroutine CenterPictureInMargins to prepare the e.Graphics object provided by the
PrintPage event handler to center a drawing on a printout. For example, the following PrintPage
event handler code draws a bar chart in the coordinate space 100 <= X <= 600, 100 <=Y <= 400. It
begins with commented code that draws the page’s margins for debugging purposes.

The code defines rectangles representing the area in which it will draw and the printed page’s margin

bounds. It passes those rectangles to the CenterPictureInMargins subroutine to prepare the Graphics
object for centering.

669

Excerpted from Visual Basic(r) 2005 with .NET 3.0 Programmer's Reference, Wrox Press, www.wrox.com

Part Ill: Graphics

Next, the program fills the picture area’s rectangle with light gray and outlines it in black. It then
calls subroutine DrawBar several times to draw five values for the bar chart. The event handler sets
e.HasMorePages to False and ends.

Subroutine DrawBar draws a rectangle for the bar chart. It draws its rectangle at the X coordinate passed
as a parameter, making it 100 units wide and hgt units tall. It fills the rectangle with a hatch pattern and
then outlines it in black. The subroutine finishes by adding 100 to x, so the next call to brawBar draws a
rectangle to the right.

' Print the page.
Private Sub Print_PrintPage (ByVal sender As Object, _
ByVal e As System.Drawing.Printing.PrintPageEventArgs)
' Draw the margins (for debugging). Be sure
' to do this before transforming the Graphics object.
e.Graphics.DrawRectangle (Pens.Red, e.MarginBounds)

' This routine draws a bar chart for 5 values
' in printer coordinates between
' (100, 100) - (600, 400).
' Transform the Graphics object to center the results.
Dim picture_rect As New RectangleF (100, 100, 600, 400)
Dim margin_rect As New RectangleF(_
e.MarginBounds.X,
e.MarginBounds.Y, _
e.MarginBounds.Width,
e.MarginBounds.Height)
CenterPictureInMargins (e.Graphics, picture_rect, margin_rect)

' Draw a rectangle around the chart.
e.Graphics.FillRectangle (Brushes.LightGray, picture_rect)
e.Graphics.DrawRectangle (Pens.Black, Rectangle.Round(picture_rect))

' Draw the values.

Dim x As Integer = 100

DrawBar (e.Graphics, x, 200, HatchStyle.BackwardDiagonal)
DrawBar (e.Graphics, x, 280, HatchStyle.Vertical)

DrawBar (e.Graphics, x, 240, HatchStyle.ForwardDiagonal)
DrawBar (e.Graphics, x, 170, HatchStyle.Horizontal)
DrawBar (e.Graphics, x, 290, HatchStyle.DiagonalCross)

' There are no more pages.
e.HasMorePages = False
End Sub

' Draw a bar in (x, 400)-(x + 100, 400 - hgt).
Private Sub DrawBar (ByVal gr As Graphics, ByRef x As Integer,
ByVal hgt As Integer, ByVal hatch_style As HatchStyle)
Dim rect As New Rectangle(x, 400 - hgt, 100, hgt)
Using hatch_brush As New HatchBrush (hatch_style, Color.Black, Color.White)
gr.FillRectangle (hatch_brush, rect)
End Using
gr.DrawRectangle (Pens.Black, rect)
x += 100
End Sub

670

Excerpted from Visual Basic(r) 2005 with .NET 3.0 Programmer's Reference, Wrox Press, www.wrox.com

Chapter 24: Printing

Figure 24-5 shows the result. You can see in the picture that the bar chart is centered within the margins.

s Print preview = B |
& O ~| (G @ @0 @ | Close Page 1%

\

Figure 24-5: Subroutine CenterPicturelnMargins
makes it easy to center a picture within a
printed page.

Fitting Pictures to the Page

Another common scenario is drawing a picture as large as possible on the page without distorting it. You
can use the same approach to this problem that was described in the previous section: Apply a transfor-
mation to the PrintPage event handler’s Graphics object to make the picture fit the printed page.

The subroutine FitPictureToMargins shown in the following code makes this transformation. It begins
by calling the Graphics object’s ResetTransform method to remove any existing transformation. Next
the subroutine translates to center the picture_bounds rectangle at the origin. Scaling an object centered
at the origin is relatively simple because the object’s center remains at the origin, so the program starts by
centering picture_bounds.

The program compares aspect ratios (ratios of height/width) of the picture_bounds and margin_bounds
rectangles. If picture_bounds has the greater aspect ratio, then it is relatively taller and thinner than
margin_bounds. In that case, the program scales to make picture_bounds the same height as margin_
bounds and sets its width appropriately.

671

Excerpted from Visual Basic(r) 2005 with .NET 3.0 Programmer's Reference, Wrox Press, www.wrox.com

Part Ill: Graphics

If picture_bounds has the smaller aspect ratio, it is relatively wider and shorter than margin_bounds.
In that case, the program scales to make picture_bounds the same width as margin_bounds and sets
its height accordingly.

After calculating the scale factor it needs, the program calls the Graphics object’s ScaleTransform
method to add it to the Graphics object’s transformation. It uses the MatrixOrder . Append parameter
to make the object apply the scaling transformation after its first translation.

Finally, the subroutine applies another translation to move the center of the scaled picture_bounds
rectangle from the origin to the center of margin_bounds. It again uses the MatrixOrder . Append
parameter, so the new transformation is applied after the previous ones.

' Transform the Graphics object to fit the rectangle

' picture_bounds to margin_bounds and center it.

Private Sub FitPictureToMargins (ByVal gr As Graphics,

ByVal picture_bounds As RectangleF, ByVal margin_bounds As RectangleF)
' Remove any existing transformation.
gr.ResetTransform()

' Translate to center picture_bounds at the origin.
gr.TranslateTransform(_
- (picture_bounds.Left + picture_bounds.Width / 2), _
- (picture_bounds.Top + picture_bounds.Height / 2))
' Scale to make picture_bounds fit margin_bounds.
' Compare the aspect ratios.
Dim margin_aspect As Single = margin_bounds.Height / margin_bounds.Width
Dim picture_aspect As Single = picture_bounds.Height / picture_bounds.Width
Dim scale As Single
If picture_aspect > margin_aspect Then
' picture_bounds is relatively tall and thin.
' Make it as tall as possible.
scale = margin_bounds.Height / picture_bounds.Height
Else
' picture_bounds is relatively short and wide.
' Make it as wide as possible.
scale = margin_bounds.Width / picture_bounds.Width
End If
' Scale.
gr.ScaleTransform(scale, scale, MatrixOrder.Append)

' Translate to move the origin to the center of margin_ bounds.
gr.TranslateTransform(_
margin_bounds.Left + margin_bounds.Width / 2,
margin_bounds.Top + margin_bounds.Height / 2,
MatrixOrder .Append)
End Sub

A program can use subroutine FitPictureToMargins exactly as it can use subroutine
CenterPictureInMargins. Figure 24-6 shows the result. This routine works whether the
picture area is relatively short and wide (as in this case) or tall and thin. It will also shrink
a picture that is bigger than the page.

672

Excerpted from Visual Basic(r) 2005 with .NET 3.0 Programmer's Reference, Wrox Press, www.wrox.com

Chapter 24: Printing

53 Print preview (=] B]
& O ~| 0 [@ B0 @ || Close Page| 112

Figure 24-6: Subroutine FitPictureToMargins
makes it easy to center a picture within a printed
page, making it as large as possible without
distortion.

Simplifying Drawing and Printing

Many applications draw some graphics, possibly with some user interaction, and then later print the same
graphics, perhaps centered and scaled to fit the page.

You can make this process easier if you move all of the program’s drawing code into subroutines that
are independent of the drawing or printing surface. These drawing routines should take as a parameter
a Graphics object on which to draw. Then it doesn’t matter whether the program passes these routines
the Graphics object provided by a PrintPage event handler or a control’s Paint event handler. They
can even use a Graphics object generated by the control’s CreateGraphics method.

The DrawGraphics subroutine shown in the following code encapsulates the drawing code used in
the previous sections. It takes a Graphics object as a parameter, draws a background on it, and calls
DrawBar to draw five hatched rectangles to form a bar chart.

' Draw the bar chart with world coordinate bounds (100, 100)-(600, 400).
Private Sub DrawGraphics (ByVal gr As Graphics)
' Draw a rectangle around the chart.

673

Excerpted from Visual Basic(r) 2005 with .NET 3.0 Programmer's Reference, Wrox Press, www.wrox.com

Part Ill: Graphics

Dim picture_rect As New Rectangle (100, 100, 500, 300)
gr.FillRectangle (Brushes.LightGray, picture_rect)
gr.DrawRectangle (Pens.Black, picture_rect)

' Draw the values.

Dim x As Integer = 100

DrawBar (gr, x, 200, HatchStyle.BackwardDiagonal)

DrawBar (gr, x, 280, HatchStyle.Vertical)

DrawBar (gr, x, 240, HatchStyle.ForwardDiagonal)

DrawBar (gr, x, 170, HatchStyle.Horizontal)

DrawBar (gr, x, 290, HatchStyle.DiagonalCross)
End Sub

(
(
(
(

Now the printPage event handler and other code can call this subroutine to draw the program’s
graphics. The following code shows how a program can use this routine to draw the bar chart on a
PictureBox named picCanvas. The control’s Resize event handler invalidates the control, so the
Paint event handler can redraw the entire surface. The control’s Paint event handler clears the
PictureBox, calls Fit?Picture?ToMargins to fit the bar chart to the PictureBox’s surface (minus
a 3-pixel margin), and calls DrawGraphics to draw the bar chart.

Private Sub picCanvas_Resize(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles picCanvas.Resize
picCanvas.Invalidate()

End Sub

Private Sub picCanvas_Paint (ByVal sender As Object,

ByVal e As System.Windows.Forms.PaintEventArgs) Handles picCanvas.Paint
' Clear the picture.
e.Graphics.Clear (picCanvas.BackColor)

' This routine draws a bar chart for 5 values

' in printer coordinates between

' (100, 100) - (600, 400).

' Transform the Graphics object to center the results.

Dim picture_rect As New RectangleF (100, 100, 500, 300)

Dim margin_rect As New RectangleF(_
picCanvas.ClientRectangle.X + 3,
picCanvas.ClientRectangle.Y + 3, _
picCanvas.ClientRectangle.Width - 6,
picCanvas.ClientRectangle.Height - 6)

FitPictureToMargins (e.Graphics, picture_rect, margin_rect)

' Draw the bar chart.
DrawGraphics (e.Graphics)
End Sub

Figure 24-7 shows the result.
This technique minimizes the amount of drawing code. It lets the program share the same code for draw-

ing, printing, and print previewing. That means less code to debug and maintain. It also means that you
need only to modify the code in one place if you need to change it later.

674

Excerpted from Visual Basic(r) 2005 with .NET 3.0 Programmer's Reference, Wrox Press, www.wrox.com

Chapter 24: Printing

2 PictureBoxPrint =/@] = |

File

sl print preview eSS >
& O -| (0 6D @ B0 @@ | Close Page| 1%

Figure 24-7: A program can use subroutine FitPictureToMargins to make a
picture fit a PictureBox as well as a printed page.

By calling FitPictureToMargins, the program makes the bar chart fill the PictureBox as much as
possible without distorting it. If the control is anchored or docked so that it resizes when the form does,
the bar chart also resizes so that it is as big as possible, a fairly impressive feat at the cost of a single sub-
routine call.

Although very useful, the technique of using a common routine to draw and print graphics is not appro-
priate for every application. Sometimes a program must take advantage of the particular characteristics
of a printer or screen object, and the results may not make sense for other types of devices.

For example, suppose that a program draws fractals by performing time-consuming calculations for
each pixel. It may make sense to show the results as the pixels are calculated on the screen. That would
take advantage of the fact that the user can immediately see the results of pixels drawn on the screen. On
the printer, however, the results aren’t visible until the complete page is printed, so sending pixels to the
printer one at a time doesn’t particularly help the user and may slow printing. It might make more sense
to draw the complete image on a Bitmap in memory and then send the result to the printer all at once by
using the Graphics object’s DrawImage method.

675

Excerpted from Visual Basic(r) 2005 with .NET 3.0 Programmer's Reference, Wrox Press, www.wrox.com

Part Ill: Graphics

Similarly, the text-printing example described earlier in this chapter prints a long series of paragraphs
broken across several pages. It takes advantage of the printed page’s exact size and margins. You might
be able to display the same page data in a scrolling window on the screen, but that probably wouldn’t
make much sense. In that application, trying to force screen drawing and page printing routines to pro-
duce exactly the same result would probably be a waste of time.

Summary

The PrintDocument object sits at the heart of the standard Visual Basic printing process. A program makes
a PrintDocument object and then responds to its BeginPrint, QueryPageSettings, PrintPage, and
EndPrint events to generate a printout.

The PrintDocument object’s Print method immediately generates a printout. You can also attach the
PrintDocument to a PrintDialog, PrintPreviewDialog, or PrintPreviewControl and use those
objects to display previews and generate printouts.

This chapter describes printing in general. Using the Graphics object provided by the PrintDocument
object’s PrintPage event, you can print lines, curves, text, images, and anything else you can draw to
the screen.

One particular kind of printing is very common in business applications: reporting. Although you can
use the general printing techniques described in this chapter to draw your own reports, Visual Studio
2005 Professional Edition comes with a tool that simplifies many reporting tasks: Crystal Reports.

Crystal Reports can help you build, format, display, and print reports. It can automatically load data
from a database and display it in tabular form complete with headers, sections, totals, subtotals, and
graphs. Chapter 25 introduces Crystal Reports.

676

Excerpted from Visual Basic(r) 2005 with .NET 3.0 Programmer's Reference, Wrox Press, www.wrox.com

	ADP14D.tmp
	Visual Basic® 2005 with .NET 3.0 Programmer’s Reference
	Chapter 24: Printing
	ISBN-10: 0-470-13705-3
	ISBN-13: 978-0-470-13705-5

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

